Synchronization and power sharing for droop-controlled inverters in islanded microgrids
نویسندگان
چکیده
Motivated by the recent and growing interest in smart grid technology, we study the operation of DC/AC inverters in an inductive microgrid. We show that a network of loads and DC/AC inverters equipped with power-frequency droop controllers can be cast as a Kuramoto model of phase-coupled oscillators. This novel description, together with results from the theory of coupled oscillators, allows us to characterize the behavior of the network of inverters and loads. Specifically, we provide a necessary and sufficient condition for the existence of a synchronized solution that is unique and locally exponentially stable. We present a selection of controller gains leading to a desirable sharing of power among the inverters, and specify the set of loads which can be serviced without violating given actuation constraints. Moreover, we propose a distributed integral controller based on averaging algorithms, which dynamically regulates the system frequency in the presence of a time-varying load. Remarkably, this distributed-averaging integral controller has the additional property that it preserves the power sharing properties of the primary droop controller. Our results hold without assumptions on identical line characteristics or voltage magnitudes.
منابع مشابه
Voltage Imbalance Compensation for Droop-Controlled Inverters in Islanded Microgrid
In this paper, a new control strategy is proposed for implementation in low-voltage microgrids with balanced/ unbalanced load circumstances. The proposed scheme contains, the power droop controllers, inner voltage and current loops, the virtual impedance loop, the voltage imbalance compensation. The proposed strategy balances the voltage of the single-phase critical loads by compensating the im...
متن کاملVoltage Security in AC Microgrids: A Power Flow-Based Approach Considering Droop-Controlled Inverters
This paper deals with the problem of voltage security in microgrids. In general, voltage security is an issue for power systems, where the lack of reactive power is a concern. For microgrids a complexity is imposed, since frequency and voltage level deviations may take place by the operation of droop-controlled inverters. This paper incorporates the load margin calculation into a microgrid stru...
متن کاملVoltage Control and Load Sharing in a DC Islanded Microgrid Based on Disturbance Observer
Increasing DC loads along with DC nature of distributed energy resources (DERs) raises interest to DC microgrids. Conventional droop/non-droop power-sharing in microgrids suffers from load dependent voltage deviation, slow transient response, and requires the parameters of the loads, system and DERs connection status. In this paper, a new nonlinear decentralized back-stepping control strategy f...
متن کاملA New Control Strategy for Voltage Restoration and Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid
Low voltage microgrids including sensitive loads often face unbalanced load conditions. Therefore, a compensation procedure should be carried out in order to balance and restore sensitive load’s voltage. In this paper, an effective voltage control strategy has been proposed for the autonomous operation of microgrids, under unbalanced load conditions. The proposed strategy balances single-phase...
متن کاملImprove the Reactive Power Sharing by Uses to Modify Droop Characteristics in Autonomous Microgrids
Usually, the conventional droop methods is utilized for control of autonomous micro-grids. In islanded micro-grids (MG), due to the effects of mismatch in line impedance, the reactive power can't share by using the conventional droop method. In this paper, a method is proposed to improve reactive power sharing. In this method, the micro-sources are acted with P-w & Q-E droop characteristics, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 49 شماره
صفحات -
تاریخ انتشار 2013